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Many potentially interesting and useful classes of NMR experi- However, the Fourier transform is only strictly applicable to
ments generate data for which conventional spectral estimation the limited subset of ‘‘complete’’ signals, i.e., t Å 0 to `
and quantification via the Fourier transform are unsatisfactory. (1–8) . Fourier transformation of signals that are truncated,
In particular, recently introduced solid-state NMR experiments at either the start or the end of the decay, leads to familiar
which involve long delays before data acquisition fall into this spectral distortions, baseline roll, and ‘‘sinc-wiggles,’’ re-
category, as the free induction decays are heavily ‘‘truncated’’

spectively. Besides, there is no built-in mechanism for noiseand have low signal-to-noise ratios. A novel detection–estimation
suppression. The linear nature of the Fourier transform im-scheme is introduced in order to analyze data from such experi-
plies that reducing these problems or improving apparentments and others where the sensitivity is low and/or the data
resolution can only be done at the expense of spectral resolu-record is strongly damped or truncated. Based on the assumption

of exponential data modeling, the number of signals present is tion and/or sensitivity.
first detected using criteria derived from information theory and The goal of NMR spectral estimation is to obtain an esti-
the spectral parameters are then estimated using the matrix pencil mate of the frequency response function of the underlying
method. Monte Carlo simulations and experimental applications spin system from the measured free induction decay (FID).
are carried out to demonstrate its superior statistical and computa- A particular FID can be characterized in terms of a model
tional performances and its general applicability to delayed acqui-

function with a set of free parameters. A crucial problem insition data. Over the range of noise levels investigated, it is found
NMR spectral estimation is, therefore, the detection of thethat this approach is essentially near-optimal in the sense that the
signal model and the estimation of the spectral parametersestimated spectral parameters have biases almost equal to zero
(e.g., damping factor, frequency, amplitude, and phase) . Theand variances very close to their theoretical Cramér–Rao lower

bounds. Compared to the popular method of linear prediction with difficulty of the detection–estimation problem is increased
singular value decomposition, this method not only improves the by the low sensitivity inherent in NMR spectroscopy. Be-
estimation accuracy (by a factor of 2–4) with a lower ‘‘break- cause of the computational complexity and noise interfer-
down’’ signal-to-noise threshold (É1.5 dB), but also reduces the ence, the problem is usually solved in two steps. The model
computational cost by about an order of magnitude. It also holds function is first chosen and verified on physical grounds or
great promise in effectively reducing truncation artifacts. It is

by statistical tests. After successful signal modeling, the freeconcluded that this approach not only facilitates the analysis of
parameters of the signals are then estimated.delayed acquisition data, but can also become a valuable tool in

Detection theory refers to the selection of the physical orthe routine quantification of general NMR spectra. A listing of
mathematical model that best describes the measured phe-programs is also included in the Appendix. q 1997 Academic Press

nomena. The model function must be chosen with care; if
the number of parameters is too large, many of them will
be spurious, particularly if one must contend with noise,INTRODUCTION
while too restrictive a model function leads to poor fitting of
the data and systematic errors. Estimate statistics are usuallyConventional spectral estimation of NMR data is based
better if the number of parameters is minimized. In NMR,on the Fourier transform (FT), which decomposes the time
the experimentally observed FID, y Å [y0 , y1 , . . . , yN01]T ,series into a sum of undamped sinusoidal oscillations. This
can be approximated by a sum of complex-valued noise-freecan be done very efficiently using the fast Fourier transform.
signal x Å [x0 , x1 , . . . , xN01]T and additive noise perturba-
tion w Å [w0 , w1 , . . . , wN01]T , where ‘‘T’’ denotes matrix

1 Current address: Laboratoire de Stéréochemie et des Interactions Molécu- transpose and N is the number of complex data points. It is
laire, Ecole Normale Supérieure de Lyon, 69364 Lyon 07, France. generally assumed that the elements of w are complex2 Current address: Laboratory for Physical Chemistry, University of

Gaussian random variables with zero mean, variance r, andNijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands.
3 To whom correspondence should be addressed. uncorrelated real and imaginary parts. This a priori assump-
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31DETECTION–ESTIMATION SCHEME FOR NOISY NMR SIGNALS

tion of normality is not only mathematically convenient, but Eq. [1]; the signal model is linear in the first and nonlinear
in the second. The complications of nonlinearity can bevia the central limit theorem, it is often a good approximation

of the real NMR circumstances. circumvented by invoking the linear prediction principle
[e.g., linear prediction (12, 13) , autoregressive modelingThe quality of spectral estimation can be improved by

incorporating further information into the signal model. This (14, 15)] or by employing matrix factorization techniques
[e.g., state space formalism (16, 17) , matrix pencil methodis conventionally done by assuming that the signal can be

decomposed into a set of exponentially damped oscillations, (18, 19, 21)] . In particular, linear prediction with singular
value decomposition (LPSVD) and related methods have
been shown to be useful complements to the Fourier trans-yn Å xn / wn Å ∑

M

iÅ1

ÉaiÉexp( jui )
form (2–8, 12, 13, 22–25) . The principles of LPSVD have
been extensively documented. In summary, one first solves1 exp[(0ai / j2pfi )n] / wn
the following linear prediction equations for the coefficients
{ci }1£i£L of the prediction polynomial,Å ∑

M

iÅ1

aiz
n
i / wn , n Å 0, 1, . . . , N 0 1,

[1]

where ÉaiÉ, ai , fi , and ui represent the absolute amplitudes,

yL01 yL02 ??? y0

yL yL01 ??? y1

: : ??? :

yN02 yN03 ??? yN0L01

c1

c2

:

cL

Å

yL

yL/1

:

yN01

. [2]
damping factors ( inverse time constants) , frequencies, and
phases of the M distinct exponentials, respectively; j is used
to denote

√
01. zi å exp(0ai / j2pfi ) is the ‘‘signal pole’’

and ai å ÉaiÉexp( jui ) is the ‘‘complex amplitude.’’ This The roots of the prediction polynomial P(z) Å 1 0 (iÅ1,L

is in general a good assumption for liquid-state NMR, and ciz
0i then produce the M signal poles {zi }1£i£M . The success

for solid-state NMR with fast magic angle sample spinning of LPSVD resides in the ability of linear prediction to extend
(9) . Based on this model function, the detection problem is truncated FIDs for resolution enhancement, or to estimate
then reduced to the determination of the number of signals missing or corrupted initial data points for baseline and phase
M . Note that the assumption of exponential decay is not corrections (26) . The corrupting effects of noise can be
necessarily unduly restrictive. The application of such a mitigated through a judicious combination of an overesti-
model to nonexponentially decaying signals results in a mated prediction order (L @ M , introducing extra L 0 M
mathematical, rather than a physical, analysis by expanding noise-related poles) to account for the noise in the measure-
each spectral component into a sum of exponentials. ments, and SVD-based signal-subspace techniques to dis-

Within the past decade, much research activity has been criminate between signal and noise (10) .
focused on formulating and comparing alternative means of While the use of LPSVD for spectral quantification has
NMR spectral estimation (2–8, 10) , driven by the promise many advantages, its major drawback is the considerably
of potentially superior spectral sensitivity and/or resolution larger computational burden and higher algorithmic com-
in comparison to the conventional Fourier transform (albeit plexity (necessary to avoid numerical instability and over-
at the expense of greater computational complexity) . In par- flow) mainly due to the high degree polynomial rooting.
ticular, parametric methods based on the exponential FID In addition, LPSVD exhibits a ‘‘breakdown’’ in estimation
modeling, cf. Eq. [1] , have attracted considerable interest. performance when the noise level increases beyond a certain
This incorporation of lineshape information should allow threshold, e.g., Refs. (2–8, 10, 12, 13, 27) . These factors
individual signals to be better resolved, both from each other make LPSVD less satisfactory, particularly when the signal-
and from the noise. In this paper, a combined detection– to-noise ratio (SNR) is low.
estimation scheme, ITMPM, based on information theory Unlike LPSVD, the recently proposed matrix pencil
and the matrix pencil method, is introduced which improves method, developed independently by Hua and Sarkar
the estimation performance and computational efficiency of (18, 19) and by Kailath and co-workers (21) , involves find-
the exponential FID modeling, relative to existing techniques ing the signal poles, zi , directly by solving a generalized
based on linear prediction. Monte Carlo simulations are first eigenvalue problem. Its formulation is governed by the no-
carried out to verify the statistical superiority of ITMPM. tion of pencil-of-functions and exploits the property of a
Its applications to the experimental data from delayed acqui- matrix pencil constructed from the underlying FID. The
sition measurements are then demonstrated. A fully auto- mathematical entity ‘‘matrix pencil’’ refers to the linear
mated program in MATLAB (11) is provided in the Appen- combination of two matrices (say, F and G) defined on a
dix to minimize the user’s implementation effort. common domain, i.e., F/ lG . The eigenvalues of the matrix

pencil are defined as the values of the scalar variable l that
ESTIMATION BY THE MATRIX PENCIL METHOD

decrease the rank of the matrix pencil.
Let X0 and X1 be two noise-free data matrices with dimen-There is an important difference between the complex

amplitude ai and the signal pole zi in the functional form of sion (N 0 L) 1 L defined by
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32 LIN ET AL.

{zi }1£i£M can be identified with the M nonzero generalized
eigenvalues of the matrix pair (X1 , X0) ,

X0 Å

xL01 xL02 ??? x0

xL xL01 ??? x1

: : ??? :

xN02 xN03 ??? xN0L01

,
X1qi Å ziX0qi , [7]

where qi is the eigenvector associated with the eigenvalue
(and signal pole) zi . The Moore–Penrose pseudo-inverse of

X1 Å

xL xL01 ??? x1

xL/1 xL ??? x2

: : ??? :

xN01 xN02 ??? xN0L

, [3] a matrix is a generalization of the matrix inverse to the case
where the matrix is not square and possibly of incomplete
rank. Left multiplying Eq. [7] by the Moore–Penrose
pseudo-inverse of X0 , X #

0 , and using the property that
where L is called the pencil parameter. It follows from Eq. X #

0X0 Å I , it is clear that the generalized eigenvalues of
[1] that these matrices can be decomposed as (X1 , X0) can be solved by finding the M nonzero eigenvalues

of the L 1 L matrix product X #
0X1 ,

X0 Å ZLBZR , X1 Å ZLBZZR , [4]
X #

0X1qi Å ziqi . [8]

where In order to apply such techniques to experimental data, it
is important to account for the effects of noise corruption.
In spectral estimation, the data matrix, covariance matrix,
and autocorrelation matrix characterize the information con-
tained in the observed signal. When constructed from noise-
less signal, these matrices possess certain eigen-characteris-
tics (e.g., rank, degeneracy, positive semidefinite) and/or
matrix structures (e.g., Hermitian, Hankel, Toeplitz) . Inevi-
table measurement noise, however, results in the loss of part
(or all) of these theoretical matrix properties. Provided that
the noise perturbation is not too large, a useful procedure

ZL Å

1 1 ??? 1
z1 z2 ??? zM

: : ??? :

zN0L01
1 zN0L01

2 ??? zN0L01
M

,

B Å

a1 0 ??? 0
0 a2 ??? 0
: : ??? :

0 0 ??? aM

,

for approximating the noiseless matrix is to find the matrix
which possesses a set of chosen properties and lies closest

ZR Å

zL01
1 zL02

1 ??? 1
zL01

2 zL02
2 ??? 1

: : ??? :

zL01
M zL02

M ??? 1

, to the empirical noisy matrix. The resulting matrix is a more
accurate representation of the characteristics of the underly-
ing signal than the original noisy matrix, where the cor-
rupting effect of noise has been mitigated and a signal en-
hancement has been accomplished.Z Å

z1 0 ??? 0
0 z2 ??? 0
: : ??? :

0 0 ??? zM

, [5]
This can be successfully incorporated into the matrix pen-

cil method. For the noisy data, we define Y0 and Y1 the
same way as for X0 and X1 with xi replaced by the noisy

ZL and ZR are Vandermonde matrices, and B and Z are measurement yi . It is clear that, while the noiseless data
diagonal matrices constructed from the complex amplitudes matrices X0 and X1 have a rank equal to the number of signal
and signal poles, respectively. components (M) , the noisy data matrices, Y0 and Y1 , will

Now consider the matrix pencil X1 0 lX0 , in general be of full rank due to noise contamination. Singu-
lar value decomposition (SVD) provides a particularly use-
ful tool for restoring the matrix-rank property. SVD, one ofX1 0 lX0 Å ZLB(Z 0 lIM)ZR

the most stable and computationally effective algorithms in
the theory of matrix algebra, is a generalization of the
eigenvalue decomposition for nonsquare matrices (10, 14,Å ZLB

z1 0 l 0 ??? 0
0 z2 0 l ??? 0
: : ??? :

0 0 ??? zM 0 l

ZR ,
15, 28) . The SVD theorem states that for an arbitrary (N 0
L) 1 L matrix Y0 there exist positive real numbers s1 § s2

§ rrr § sR ú 0 (the so-called singular values) , an (N 0[6]
L) 1 (N 0 L) unitary matrix U Å [u1u2rrruN0L] , and an
L 1 L unitary matrix V Å [y1y2rrryL] such that

where IM is an M 1 M identity matrix. In general, the rank
of the matrix pencil X1 0 lX0 is M . However, if l Å zi then

Y0 Å UFS0 GV † Å ∑
R

iÅ1

siuiy
†
ithe rank of Z 0 lIM will be reduced to M 0 1. In other

words, each of the zi will be a rank reducing number of the
matrix pencil X1 0 lX0 , and so, by definition, the set Å s1u1y

†
1 / s2u2y

†
2 / rrr / sRuRy

†
R , [9]
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33DETECTION–ESTIMATION SCHEME FOR NOISY NMR SIGNALS

where S Å diag(s1 , s2 , . . . , sR) is an R 1 R diagonal Left multiplying by V †
M and using the unitary nature of VM ,

matrix, 0 is a null matrix, ‘‘†’’ denotes conjugate transpose, i.e., VMV †
M Å V †

MVM Å I , we have
and R £ min(N 0 L , L) is defined as the rank of Y0 .
The matrix Y0 is thus constructed from R rank-one matrices S01

M U †
MY1VM(V †

Mqi ) Å zi (V †
Mqi ) . [14]

weighted by their respective singular values. The matrix of
rank M (õR) which lies closest, in a least-squares sense, to

Now it can be seen that the estimates of {zi }1£i£M can bethe original matrix is constructed using the first M principle
found by computing the eigenvalues of the much smaller Msingular values and the associated singular vectors [Eckart–
1 M matrix S01

M U †
MY1VM .Young theorem (29)] , i.e.,

DETECTION BASED ON INFORMATION THEORY
YO 0 Å UMSMV †

M Å ∑
M

iÅ1

siuiy
†
i , [10]

A potential difficulty encountered in practical applications
of the matrix pencil and other SVD-based methods is the

where UM Å [u1u2rrruM] , VM Å [y1y2rrruM] , and SM Å ambiguity in detecting the number of signal components, that
diag(s1 , s2 , . . . , sM) . is, in choosing the matrix rank M (30) . The determination of

The Moore–Penrose pseudo-inverse can also be defined M is crucial; too small a value of M results in information
in terms of the SVD components of Y0 , loss, while too large a value effectively incorporates more

noise and generates spurious spectral features. For well-re-
solved spectra with reasonable SNR, the value of M can beYO #

0 Å VMS
01
M U †

M Å ∑
M

iÅ1

s01
i yiu †

i . [11]
determined from the sharp cutoff in magnitude of the singu-
lar values, or the number of resolved peaks in the FT spec-
trum above a predefined threshold. These criteria, however,Hence, for noisy data, the M nonzero eigenvalues of the
become ill defined as the spacing between resonance fre-signal-enhanced L 1 L matrix product YO #

0Y1 give the esti-
quencies, the number of data points, or the SNR decreases.mates of the signal poles zi , and hence the damping factors

Various criteria have been proposed to address this prob-ai Å 0logÉziÉ, and frequencies fi Å arg(zi ) /2p. It should
lem. They may be classified into the following five catego-be noted that further replacement of Y1 by its rank M counter-
ries: ( i ) subjective threshold settings of singular valuespart Ŷ1 offers little advantage, due to the strong correlation
(28, 31, 32) , e.g., s1 § s2 § rrr§ sM ú d§ sM/1 , whereof the noise between Y0 and Y1 . Once {zi }1£i£M are known,
the threshold value d is selected on an ad hoc basis; ( ii )the absolute amplitudes ÉaiÉ and phases ui Å arg(ai ) can
statistical threshold bounds on singular values (30) , whichbe solved by a general linear least-squares analysis
is similar to (i) but the threshold is based on the theories
of perturbations of singular values and statistical significance
test; ( iii ) hypothesis test of likelihood ratios (33, 34) , for
each hypothesis the likelihood ratio statistic is compared to

y0

y1

:

yN01

Å

1 1 ??? 1
z1 z2 ??? zM

: : ??? :

zN01
1 zN01

2 ??? zN01
M

a1

a2

:

aM

/

w0

w1

:

wN01

.
a subjective threshold level; ( iv) matching of reconstruction
residue with noise power (35, 36) , consecutive reconstruc-
tions for various ranks are performed and the resulting error[12]
power is compared to the noise power; (v) information the-
ory for model order selection (37) . All these criteria appear

Note that the pencil parameter L (where M õ L õ N) intuitively reasonable and function effectively over various
will influence the quality of the results, in a similar way that cases. Moreover, the information theoretic criteria, (v) , have
LPSVD is affected by the choice of the polynomial degree certain theoretical and computational advantages over the
(prediction order) . A poor choice of prediction order or others. These criteria were originally introduced in the con-
pencil parameter will limit the performance of either tech- text of linear prediction by Akaike [AIC, Akaike information
nique. It is empirically found that the optimal value for L criterion (38)] and by Schwartz and Rissanen [MDL, mini-
ranges from LÅ N /3 for noisy signals to LÅ N /2 for signals mum description length (39, 40)] , and later adapted to expo-
with a higher SNR (18, 19) . nential modeling by Wax and Kailath (37) . Unlike the con-

The computational efficiency can be increased by noting ventional approaches in categories ( i) and (iii ) , AIC and
that since YO #

0Y1 has rank M õ L , L 0 M of its eigenvalues MDL do not require any subjective threshold settings. Statis-
are zero (19) . The size of YO #

0Y1 can therefore be reduced tically determined criteria generally perform better than
before its eigenvalues are found. Substituting for YO #

0 from those empirically set by the user, as well as minimizing
Eq. [11] into the eigenvalue equation, Eq. [8] , for YO #

0Y1 , the necessity for user involvement. The principle and the
derivation of these criteria can be found elsewhere (14, 15) ,
but in summary, the optimal value of M is determined merelyVMS

01
M U †

MY1qi Å ziqi . [13]
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34 LIN ET AL.

by minimizing a discrete function of the singular values where 1 is the expectation operator and bO is the estimate of
(which are already known from Eq. [9]) , e.g., the spectral parameter whose true value is b. Ideally the

bias should be negligibly small and the variance as close as
possible to its theoretical lower limit, the Cramér–Rao lower

MDL(k) Å 0log
(∏L

iÅk/1 si )N

S 1
L 0 k

∏L
iÅk/1 siD (L0k )N bound (see below).

Analytical determination of these functions is generally
intractable. Instead they can be estimated using Monte Carlo
simulations in which the statistics are calculated using the/ 1

2
k(2L 0 k) . [15] same noise-free data set, but many different realizations of

the noise. In this section, three simulation experiments are
carried out to evaluate the performance of ITMPM, whileThis is very different from the approaches in category (iv)
LPSVD is used as a benchmark against which ITMPM canwhere a priori knowledge of the noise power and extra
be compared. The MATLAB code for both ITMPM andcomputational cost for consecutive reconstructions are defi-
the original Kumaresan–Tufts LPSVD algorithm with biasnitely required. In this work, MDL is used in preference to
compensation (12, 13) is listed in the Appendix. The SNRAIC as it has been shown to give consistent estimates of M ,
is here defined aswhile AIC tends to overestimate the number of signals as

the number of data points increases (37) .

SNR Å
def

10 log10
(i ÉaiÉ

2

r
(dB), [19]

MONTE CARLO SIMULATIONS

The development of any signal processing protocol re- where r is the noise variance.
quires a rigorous statistical evaluation of its performance.

Example I: Single exponentially damped sinusoid. InVisual comparison of the results of a few realizations is
this example, the synthesized FIDs are given by yn Åinsufficient to draw any general conclusions (14, 15) . The
ÉaÉexp( ju)exp[(0a / j2pf )n] / wn with damping factorbias, variance, and mean relative error (MRE) are statistical
a Å 0.1, normalized frequency f Å 0.52, absolute amplitudemeasures that are commonly used to quantify the perfor-
ÉaÉ Å 1.0, phase u Å 0, and n Å 0, . . . , 24. For nonparamet-mance,
ric estimators (e.g., the Fourier transform), the noise can
be observed directly in the spectrum, while for parametric

bias(bO ) Å
def

1(bO ) 0 b [16] estimators (e.g., LPSVD and ITMPM), the noise manifests
itself as uncertainty in the estimated parameters, leading to

var(bO ) Å
def

1{[bO 0 e(bO )]2} [17] a distribution of observed parameter values. Ideally the mean
of this distribution corresponds to the true value of the pa-
rameter, i.e., the estimation method is unbiased, while theMRE(bO ) Å

def

1SZbO 0 b

b
ZD 1 100%, [18]

TABLE 1
Bias { Standard Deviation of the Estimated Spectral Parameters

SNR
(dB) Method Damping factor a Frequency f Amplitude ÉaÉ Phase u

50 CRLB 0 { 2.10 E-4 0 { 3.35 E-5 0 { 1.32 E-3 0 { 1.32 E-3
ITMPM 07.34 E-7 { 2.38 E-4 01.30 E-6 { 3.63 E-5 1.69 E-5 { 1.41 E-3 2.74 E-5 { 1.37 E-3
LPSVD 5.83 E-4 { 2.69 E-4 01.21 E-6 { 3.93 E-5 2.55 E-3 { 1.53 E-3 2.50 E-5 { 1.43 E-3

40 CRLB 0 { 6.65 E-4 0 { 1.06 E-4 0 { 4.18 E-3 0 { 4.18 E-3
ITMPM 09.99 E-6 { 7.37 E-4 6.93 E-6 { 1.13 E-4 02.71 E-4 { 4.58 E-3 03.05 E-4 { 4.16 E-3
LPSVD 1.86 E-3 { 8.35 E-4 5.56 E-6 { 1.21 E-4 7.77 E-3 { 4.84 E-3 02.68 E-4 { 4.38 E-3

30 CRLB 0 { 2.10 E-3 0 { 3.35 E-4 0 { 1.32 E-2 0 { 1.32 E-2
ITMPM 1.57 E-4 { 2.21 E-3 8.82 E-6 { 3.50 E-4 9.26 E-4 { 1.40 E-2 05.81 E-4 { 1.31 E-2
LPSVD 5.98 E-3 { 2.53 E-3 1.02 E-5 { 3.85 E-4 2.55 E-2 { 1.50 E-2 06.18 E-4 { 1.38 E-2

24 CRLB 0 { 4.19 E-3 0 { 6.68 E-4 0 { 2.64 E-2 0 { 2.64 E-2
ITMPM 2.44 E-4 { 4.40 E-3 6.46 E-5 { 7.01 E-4 1.99 E-3 { 2.71 E-2 02.44 E-3 { 2.71 E-2
LPSVD 1.17 E-2 { 5.42 E-3 5.70 E-5 { 7.68 E-4 4.89 E-2 { 2.92 E-2 02.21 E-3 { 2.85 E-2

18 CRLB 0 { 8.37 E-3 0 { 1.33 E-3 0 { 5.26 E-2 0 { 5.26 E-2
ITMPM 2.69 E-3 { 9.74 E-3 02.54 E-5 { 1.35 E-3 1.66 E-2 { 5.52 E-2 4.88 E-4 { 5.44 E-2
LPSVD 2.52 E-2 { 1.26 E-2 03.22 E-5 { 1.49 E-3 1.02 E-1 { 5.92 E-2 5.83 E-4 { 5.65 E-2
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35DETECTION–ESTIMATION SCHEME FOR NOISY NMR SIGNALS

deviation. For all SNRs tested here, ITMPM is more accurate
and precise than LPSVD.

There are a couple of reasons why ITMPM can perform

FIG. 1. The 19F spectrum of p-fluorophenol calculated assuming weak
coupling. The theoretical FIDs used in Example II and Example III are
calculated by the NMR computer simulation package GAMMA (60) . The
equilibrium density matrix of the underlying spin system is first treated by
a (p /2)y ideal pulse and then propagated in time governed by the isotropic
chemical shift and scalar coupling Hamiltonian without relaxation effects.
The FID, taken by a single-quantum quadrature detection operator sampling
the xy magnetization, is apodized by an exponential decay function to
simulate T2 relaxation. (a) FT spectrum of the noiseless FID; (b) FT
spectrum of a FID with SNR Å 14.5 dB; (c) ITMPM spectrum of (b) .

minimum value of its standard deviation is given by the
Cramér–Rao lower bound (CRLB), also known as the mini-
mum variance bound (14, 15) . The calculation of these
lower bounds is reasonably straightforward for signals dis-
torted by uncorrelated Gaussian noise and parallels exactly
the calculation of the covariance matrix for least-squares
model fitting; indeed the CRLBs are identical to the standard
deviations on parameter values returned by model fitting (in
the absence of systematic error) . The details of the calcula-
tion can be found elsewhere (12, 19, 20) .

Table 1 summarizes the results of a Monte Carlo simula-
FIG. 2. Monte Carlo simulations (with 400 noise realizations) on thetion using 500 noise realizations for each value of the SNR,

19F p-fluorophenol FIDs of Fig. 1 as a function of SNR. The curves showusing M Å 1. It can be seen that the standard deviations
the results for ITMPM (solid line) and LPSVD (dashed line) using FID

(square root of the variance) for ITMPM are close to the lengths of N Å 128 (s) complex points (sampling from 0 to 2.56 T2) and
theoretical lower bounds, and, unlike LPSVD, the bias on N Å 256 (L) points (sampling from 0 to 3.84 T2) ; (a) success rate, (b)

MRE of damping factors, and (c) MRE of amplitudes.each ITMPM result is always much smaller than its standard
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solution, the one with the minimum Euclidean norm is
unique and is given by YO #

0yL0j/1 . The minimum-norm choice
has been shown to be an effective way to overcome the
estimate sensitivity to noise perturbation (43) . On the other
hand, the solution provided by LPSVD is simply (cf. Eq.
[2])

CLPSVD Å [YO #
0yL , JL , JL01 , . . . , J2] , [23]

where Ji is the L 1 1 vector with its i th element equal to
1 and all other elements zero. It is clear from Eq. [23] that
only the first column of CLPSVD is the minimum-norm solu-
tion to Eq. [22] while the other columns are just trivial
solutions. CITMPM, however, is the unique minimum-norm
solution to the full matrix prediction equation of Eq. [20];
this results in better immunity to noise perturbation.

In addition, ITMPM distinguishes more reliably between
signal and noise eigenvalues (poles) . This is because CITMPM

has M eigenvalues at {zi }1£i£M and L 0 M extraneous zero
eigenvalues, while CLPSVD has M eigenvalues at {zi }1£i£M

and L 0 M extraneous eigenvalues that are nonzero and
located inside the unit circle. (Recall that CLPSVD is in fact
the companion matrix of the prediction polynomial in
LPSVD, and solving the roots of a polynomial is equivalent
to solving the eigenvalues of its companion matrix.) Conse-
quently, LPSVD requires a tedious pruning step in discrimi-
nating the signal eigenvalues from the extraneous ones intro-
duced by the noise. This discrimination becomes increas-
ingly difficult as the noise level increases.

FIG. 3. Calculated 1H spectra of glutamic acid in D2O. (a) FT of the
FID truncated to 384 data points and zero-filled to 4096 points (SNR Å
54 dB); (b) FT spectrum of (a) apodized by multiplying the truncated FID
by an exponential decay; (c) ITMPM spectrum of (a); (d) FT spectrum
of the original FID of 4096 points and SNR Å ` .

better than LPSVD (18, 19, 41, 42) . Despite their differ-
ences, both methods solve the following matrix prediction
equation,

YO 0C Å Y1 . [20]

The solution obtained by ITMPM is

CITMPM Å YO #
0Y1 Å [YO #

0yL , YO #
0yL01 , . . . , YO #

0y1] , [21]

where yi Å [yi , yi/1 , . . . , yi/N0L01]T ( i Å 1, 2, . . . , L) .
Each column of CITMPM (say, the j th column) is a solution
to the equation

YO 0c Å yL0j/1 . [22]
FIG. 4. The functional value of the MDL criterion (dashed line) and

the magnitude of the singular values (solid line) (both are normalized)
Note that, as Ŷ0 has a nontrivial null space, the least-squares during the ITMPM analysis of Fig. 3c. The optimal matrix rank determined

by MDL is M Å 57.solution to Eq. [22] is not unique. Of all the least-squares
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Example II: 19F spectrum of p-fluorophenol. Figure 1a methods, whatever their theoretical advantages, is limited if
they involve significant computational overheads. ITMPM,shows the theoretical 19F NMR spectrum of p-fluorophenol,

a heteronuclear system containing five spin-1
2 species. Figure however, is significantly faster than methods such as

LPSVD, since no high degree polynomial rooting is needed.1b shows the FT spectrum of a typical FID used in the
This is particularly true for general NMR FID lengths ofMonte Carlo simulation (SNR Å 14.5 dB) while (c) is
about 1–2K points, where the number of floating-point oper-the corresponding ITMPM spectrum. The improvement in
ations (flops) is reduced by roughly an order of magnitude,sensitivity is substantial, although the effects of noise can
as measured in their MATLAB implementations. ITMPMstill be seen as small errors in the phases of the lines as
can still not compete, however, with the efficiency of thecompared to the ideal spectrum, (a) .
fast Fourier transform. The FFT requires computational timeThe results of Monte Carlo simulations using 400 noise
proportional to O(N log2N) , whereas SVD is an O[(N 0realizations for various SNR with M Å 9 are shown in Fig.
L) 1 L 2] process. Should computational efficiency be of2. Figures 2b and 2c show the mean relative errors in the
great concern, rapid SVD of a Toeplitz or Hankel matrixdamping factors and amplitudes, respectively; both ITMPM
can be accomplished by using the Lanczos algorithm (45)and LPSVD give very reliable estimates of signal frequen-
and/or explicitly exploiting the Toeplitz or Hankel structurecies (44) . Signals may not be correctly detected at low
of the data matrix (46) . Moreover, the result of the ITMPMSNRs; for this example, detection is defined as successful
analysis is a table of spectral parameters which either canif all the peaks are resolved within {0.6 ppm (about 1

6 of
be used to construct a frequency/time domain spectrum orthe average peak spacing) of their correct chemical shifts.
can be used directly without extra tedious manual operationFigure 2a shows the failure rate as a function of SNR. It is
for peak searching, curve fitting, and intensity integration.apparent that ITMPM not only provides significantly more
With the present processing protocol, results can be obtainedaccurate estimates of the spectral parameters (by a factor of
in 4.5 min of CPU time for 1024 complex data points on a2–4), but also has a lower SNR ‘‘breakdown’’ threshold
SGI Indigo workstation with a 100-MHz R4000 processor(lower by É1.5 dB, as estimated from the success rate) .

In practice, the usefulness of ‘‘exotic’’ spectral estimation and a spectroscopist’s intervention is needed only for data

FIG. 5. Experimental spectra of static polycrystalline anthracene (upper row) and malonic acid (lower row) measured at room temperature on a
Bruker AM-400 spectrometer with 231 points and initial delays of 600 ms (anthracene) and 856 ms (malonic acid) . (a) FT spectra of the FIDs obtained
by accumulating 10,240 (anthracene) and 8192 (malonic acid) scans; (b) ITMPM spectra of (a) with the optimal matrix rank, M Å 5 (anthracene) and
M Å 6 (malonic acid) , determined by the MDL criterion; (c) FT spectra of the FIDs obtained under the same experimental conditions as (a) but
accumulating 198,865 (anthracene) and 117,112 (malonic acid) scans; (d) phase-corrected ITMPM spectra, obtained from (b) by setting all the phases
to zero.
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truncated to 384 complex data points (and zero-filled back
to 4096) is shown in Fig. 3a. The details of the spectrum are
obscured and distorted by sinc-wiggles from nearby stronger
signals. Figure 3b shows the result of applying an exponen-
tial apodizing function to the FID prior to Fourier transfor-
mation. This effectively attenuates the sinc-wiggles, at the
expense, however, of resolution. In contrast, applying
ITMPM to the truncated FID gives a spectrum, Fig. 3c, in
which the sinc-wiggles are suppressed without degrading
resolution. This is particularly significant in multidimen-
sional spectroscopy where the indirectly detected dimensions
must often be severely truncated to keep the experiment time
within reasonable bounds. Clearly ITMPM can effectively
reduce the truncation artifacts.

Figure 4 plots the singular values obtained during the
ITMPM analysis of Fig. 3c. It is clear from the gradual
decrease of the singular values (solid line) that the separation
of signal singular values from those associated with noise
is not straightforward and subjective approaches are likely
to be unsatisfactory. By contrast, the minimum of the MDL
criterion (dashed line) is relatively well defined.

APPLICATIONS

This work has been prompted by our studies of the long-
time behavior of free induction decays in solid-state NMR.
Apparently high-resolution spectra (more characteristic of solu-
tion rather than solid-state NMR) have been obtained by using
a sufficiently long delay between simple pulse excitation and
data acquisition. This striking phenomenon has been observed
in various experiments using static, magic angle spinning, andFIG. 6. Experimental spectra of an aqueous solution containing 0.20

M CaCl2 and 0.10 M sodium EDTA obtained at 300 K on a Bruker AM- off-magic angle spinning samples, and has attracted a wide
400 spectrometer. (a) FT spectra of the FID obtained by accumulating variety of explanations (47–55). Extensions of SPEDAS (sin-
50,000 scans; (b) ITMPM spectra of (a) with the optimal matrix rank, M

gle-pulse excitation delayed acquisition spectroscopy) to two-Å 2, determined by the MDL criterion; (c) FT spectra of the FIDs obtained
dimensional experiments involving 1H COSY and multiquan-under the same experimental conditions as (a) but accumulating 1,700,000
tum coherence using polycrystalline fumaric acid monoethylscans.

ester (a ‘‘rigid’’ solid in which there is no motional averaging)
have also been reported (48, 50).

transfer (compared to 2 s and 40 min for FT and LPSVD, Investigation of these experiments is hampered by the
respectively) . extremely large phase distortions and severe sensitivity

losses (by factors of 1002–1004) that result from the longExample III: 1H spectrum of glutamic acid in D2O. Classi-
cal spectral estimation using Fourier transformation of trun- delay between excitation and acquisition. The use of signal

averaging to improve the SNR is limited by the long T1cated data sets implicitly assumes that the unobserved data
are zero. A blurred spectral estimate is a consequence of such spin–lattice relaxation times of solid-state samples. Hence,

experimental restrictions on the total acquisition time resultan unrealistic assumption. It should be possible to obtain a
better estimate by using a priori knowledge to construct a in low sensitivity, and potentially poor spectral resolution

in multidimensional experiments (due to data truncation insuitable model for the unobserved data. This would eliminate
the need for window functions, along with the associated the indirectly detected dimensions) .

Clearly a more sophisticated spectral estimation method thantrade-offs of resolution and sensitivity. Moreover, by incor-
porating lineshape information, parametric methods, such as the Fourier transform is required to analyze the results of these

experiments. Although the nature of the signals is still currentlyITMPM, are able to resolve overlapped signals that cannot
be separated in an FT spectrum. under investigation, our experimental experience suggests that

modeling as a sum of exponentials is a reasonable approxima-This is illustrated in Fig. 3 using the calculated 1H spec-
trum of glutamic acid in D2O, whose ‘‘true’’ spectrum is tion (56). Figure 5a shows the FT spectra using 10,240 and

8192 scans for static polycrystalline anthracene (upper row)shown in (d). The result of Fourier transforming the FID
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and malonic acid (lower row), respectively. Despite the exten-
sive signal averaging, the features of the spectrum are still
difficult to distinguish from the high-level background noise.
The corresponding ITMPM spectra are shown in Fig. 5b. In-
creasing the number of scans from 10,240 to 198,856 for an-
thracene and from 8192 to 117,112 for malonic acid gives the
FT spectra shown in Fig. 5c. The difference between these
‘‘true’’ spectra and the ITMPM spectra derived from much
noisier signals is very small. The ability of ITMPM to extract
the signal information from relatively noisy FIDs greatly facili-
tates the study of the long-time behavior of solid-state NMR
signals, particularly as the problems of phase correction are
eliminated, cf. Fig. 5d.

ITMPM should also be important in other experiments where
the FID is truncated or whenever the SNR is low, as demon-
strated below. Figure 6a presents the FT spectrum of a noisy
43Ca FID from an aqueous solution containing 0.20 M CaCl2

(natural abundance) and 0.10 M sodium EDTA, and acquired
with 50,000 scans. Its corresponding ITMPM spectrum is
shown in Fig. 6b. From the chemical composition of the solu-
tion, it is known that the FID should consist of two exponential
components corresponding to free Ca2/ and the Ca–EDTA
complex. We have also performed another measurement under
the same experimental conditions except for an increase of
scans from 50,000 to 1,700,000. Its FT spectrum is depicted in
Fig. 6c and will be used as the ‘‘true’’ spectrum for comparison.
Again, the ITMPM spectrum serves as a very close approxima-
tion to the ‘‘true’’ spectrum.

CONCLUSIONS

An often recurring problem in NMR spectroscopy is how
to improve spectral sensitivity and resolution. The Monte
Carlo simulations described above indicate that this com-
bined detection–estimation scheme, ITMPM, is able to si-
multaneously achieve these objectives. The deficiencies of
the applications of the FT to imperfect NMR data can be
diminished to a large extent at the expense of reasonable
computational complexity. Compared to LPSVD, it has the
advantages of greater computational efficiency, higher preci-

FIG. 7. The flowchart of the ITMPM algorithm.
sion and accuracy of the estimated spectral parameters, and
less tendency for spurious estimates at low signal-to-noise
ratios. ITMPM is essentially near-optimal over the range of spectra with much improved sensitivity and resolution.

ITMPM should also be important in other experiments wheresignal-to-noise ratios investigated; the parameter estimates
have biases that are close to zero and standard deviations the FID is truncated or whenever the SNR is low. This is

often the case in one- and multidimensional NMR studiesclose to their Cramér–Rao lower bounds.
For experimental applications, ITMPM considerably facil- of low gamma nuclei, in vivo samples, and macromolecules

of biological interest. Consequently, ITMPM could becomeitates our analysis of the delayed acquisition data, and in-
creases the potential applicability of SPEDAS-like experi- a valuable quantification tool within NMR and other

branches of Fourier spectroscopy.ments to solid-state NMR, by providing phase-corrected

APPENDIX

To assist in the implementation of ITMPM and related techniques, MATLAB programs for ITMPM and LPSVD are
listed below; the flowchart for the ITMPM algorithm is depicted in Fig. 7. MATLAB has the advantage of providing easy
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access to matrix software developed by the LINPACK (57) and EISPACK (58) projects, and allowing rapid code
development and refinement (59) .

function [para,M,itc]Åitcmp(y,M)
% ITMPM information theoretic criteria and matrix pencil method
% function [para,M,itc]Åitcmp(y,M)
% author: Yung-Ya Lin, 4/15/96
% arguments:
% y: complex vector, NMR FID time series
% M: real scalar, number of signals or effective matrix rank
% MÅ01 using AIC; MÅ02 using MDL; M úÅ 0 using the user’s input value
% para: real M∗4 matrix, estimated damping factor, frequency, amplitude, phase
% itc: real vector, containing AIC or MDL function values
yÅy(:); NÅlength(y);
LÅfloor(N/3); % pencil parameter
YÅtoeplitz(y(L/1:N),y(L/1:01:1)); % YOÅY(:,2:L/1), Y1ÅY(:,1:L) Eq. [3]
[U,S,V]Åsvd(Y(:,2:L/1),0); % singular value decomposition
SÅdiag(S);
itcÅzeros(1,L);
if MÅÅ01 % determining M by AIC

for kÅ0:L01;
itc(k/1)Å02∗N∗sum(log(S(k/1:L))) . . .

/ 2∗N∗(L0k)∗log((sum(S(k/1:L))/(L0k))) / 2∗k∗(2∗L0k);
end
[tempY, tempI]Åmin(itc); MÅtempI01;

end
if MÅÅ02 % determining M by MDL Eq. [16]

for kÅ0:L01;
itc(k/1)Å0N∗sum(log(S(k/1:L))) . . .

/ N∗(L0k)∗log((sum(S(k/1:L))/(L0k))) / k∗(2∗L0k)∗log(N)/2;
end
[tempY, tempI]Åmin(itc); MÅtempI01;

end
sÅlog(eig(diag(1./S(1:M))∗ . . . % signal pole zÅexp(s)

((U(:,1:M) *∗Y(:,1:L))∗V(:,1:M))));
ZÅzeros(N,M);
for kÅ1:M; Z(:,k)Åexp(s(k)). O [0:N01].*; end;
aÅZ"y; % linear least squares analysis
paraÅ[0real(s) imag(s)/2/pi abs(a) imag(log(a./abs(a)))];
return

function [para]Ålpsvd(y,M)
% LPSVD linear prediction with singular value decomposition
% function [para]Ålpsvd(y,M)
% author: Yung-Ya Lin, 4/15/96
% reference: R. Kumaresan, D. W. Tufts IEEE Trans. Acoust. Speech Signal Processing
% vol. ASSP-30, 837-840, 1982.
% arguments:
% y: complex vector, NMR FID time series
% M: real scalar, number of signals or effective matrix rank
% para: real M∗4 matrix, estimated damping factor, frequency, amplitude, phase
yÅy(:);
NÅlength(y); % # of complex data points in FID
LÅfloor(N∗3/4); % linear prediction order L Å 3/4∗N
AÅhankel(conj(y(2:N0L/1)),conj(y(N0L/1:N))); % backward prediction data matrix
hÅconj(y(1:N0L)); % backward prediction data vector
[U,S,V]Åsvd(A,0); % singular value decomposition
clear A;
SÅdiag(S);
biasÅmean(S(M/1:min([N0L,L]))); % bias compensation
bÅ0V(:,1:M)∗(diag(1./(S(1:M)0bias))∗(U(:,1:M) *∗h));

% prediction polynomial coefficients
sÅconj(log(roots([b(length(b):01:1);1]))); % polynomial rooting
sÅs(find(real(s)õ0)); % extract true signal poles
ZÅzeros(N,M);
for kÅ1:M; Z(:,k)Åexp(s(k)). O [0:N01].*; end;
aÅZ"y; % linear least squares analysis
paraÅ[0real(s) imag(s)/2/pi abs(a) imag(log(a./abs(a)))];
return
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